
Objective

The objective is to produce a USB
drive with a Linux partition on it and an
SD card containing firmware that will
cause that drive to boot up in Raspberry Pi
OS (aka Raspbian). Once this has been
done, it is a relatively simple matter to
make changes to the firmware on the SD
card to allow a dual boot.
Method

The standard distro for Raspian is
designed to fit onto a range of SD cards so
long as they are at least 8.01 GB
(8602517504 bytes) in size. Writing this
image to an SD card means that only part
of the full capacity of the SD card is
actually used. The same image can be
written to a USB drive.

If you read back the image from the
SD card (or drive) it will read the whole
capacity of the card (or drive) - the image
you just wrote to it plus the remainder of
the card, whatever it happens to contain.

The first time that Raspbian starts up,
it is set up to change the partition size of
the drive to its full capacity without losing
any of the data on the drive. It also
changes the start up scripts
‘CMDLINE.TXT’ and ‘CONFIG.TXT’
in two respects - the ‘resize’ option is
removed and the UUID of the partition

where Linux is to be found is updated.
The CMDLINE.TXT file is used

extensively by Linux (not all of which I
understand) and it refers explicitly to the
ext4 (Linux) partition by means of a magic
number (UUID) which is only known after
the SD card partition has been created.

Step 1 is to write the standard
Raspbian distro image to a USB drive -
this will become a two partition drive with
FAT and ext4 partitions that occupy only
the first 8GB of the drive.

Step 2 is to write the standard RISC
OS distro onto an SD card - this will
become a two partition card with
overlapping filecore and FAT partitions
using only the first 1876Mbytes of the
card.

Step 3 is to copy the files in the FAT
partition on the USB drive onto the FAT
partition on the SD card. The files
‘CMOS’ and ‘RISCOS.IMG’ will be all
that is left of the RISC OS firmware but
the filecore partition will be unchanged.

You now have an SD card which will
boot into Raspbian, with all the Linux data
on the USB drive.

Step 4 is to take a Raspberry Pi model
4B with the SD card and USB drive and
boot into Raspbian, allow it to resize itself
and shut it down.

1 Dual Boot Firmware

Dual boot firmware

disable_gamma console=serial0,115200 console=tty1 root=PARTUUID=3a324232-02
rootfstype=ext4 elevator=deadline fsck.repair=yes rootwait quiet init=/usr/lib/raspi-
config/init_resize.sh splash plymouth.ignore-serial-consoles

The contents of CMDLINE/TXT - the location of the root file system is specified by a partition UUID,
highlighted above. For a particular SD card image this magic number is known. If you specify the correct
partition UUID for an ext4 partition on a USB pen drive then Linux will boot from that pen drive. When it
resizes the ext4 partition the UUID changes but it updates the CMDLINE.TXT on the pen drive.

Whereas RISC OS requires very few, if any, commands in the CMDLINE/TXT file (disable_gamma and
disable_mode_changes for example), Linux requires lots of stuff, which RISC OS can happily ignore.

The partition UUID is a unique identifier for a partition and may refer to a USB drive or SD card.

A current version of Linux would have allowed the command ls -l /dev/disk/by-partuuid to discover
the required information.

Step 5 is to edit the
‘CMDLINE.TXT’ and CONFIG.TXT’
files on the SD card to make it into a dual
boot card.

First add the highlighted bit to
CONFIG.TXT - this adds a conditional
bit for gpio5=1 (switch open) that is the
normal RISC OS stuff with an extra
enigmatic (but essential) blank device tree
line. The Raspbian bit is also now
contained in a gpio5=0 condition.

Now take the updated contents of the
CMDLINE.TXT file on the USB drive
(which will have been updated to remove
the ‘resize’ command and to have an
updated UUID for the ext4 partition on
the USB drive that has now been
expanded to occupy the whole) and copy it
to the FAT partition on the SD card.

The SD card is now a dual-boot SD
card with RISC OS as the default.

Detail

Let us look at the Raspian distribution
(see illustration on next page) - this is also
a two-partition SD card image which
includes a 256MB fat partition and a
3384MB Linux partition which is seen (by
Linux) as /dev/sdb2. Note that the
contents of both partitions are displayed.

In order to create an SD card that will
work on both operating systems then we
will need a FAT partition of 256MB and
we may as well make the filecore partition
occupy the rest of the SD card - the
SystemDisc software can create the
necessary ‘blank’ SD card.

A switch on the 40 pin header between
pins 29 (GPIO5) and 30 (GND) will
enable a decision to be taken at boot time
whether to boot into Linux or RISC OS.
The changes we have made to the SD card
firmware will cause a boot into Linux if the
switch is closed and into RISC OS if it is
left open (or not present).

Now we have a switch on the header to
pull GPIO5 to LOW if the switch is
pressed, the changes to CONFIG/TXT
will now take different action on booting.
There is an option to examine a GPIO pin
and make execution conditional.

The first line of the file jumps over the
RISC OS bits if GPIO 5 is pulled low.
Linux has done its stuff in the CMDLINE/
TXT file and needs little in this file. RISC
OS does not seem put out by it.
Complications on Pi 4

If you move an SD card between a Pi
4 and another model, you need to delete
the directory $.!Boot.Choices.Boot so that
it is repopulated on start up to ensure the
correct network drivers are loaded.
Backing up as you go

Now we can backup the SD card
image (Win32DiskImager will create an
image file the whole length of the SD card
but this file can be truncated to a shorter

2 Dual Boot Firmware

[gpio5=1]
fake_vsync_isr=1
framebuffer_swap=0
gpu_mem=64
init_emmc_clock=100000000
ramfsfile=CMOS
ramfsaddr=0x508000
kernel=RISCOS.IMG
device_tree=
hdmi_drive=2
hdmi_blanking=1
disable_overscan=1
[pi4]
enable_gic=1
[all]
[gpio5=0]
Additional overlays and parameters are
documented /boot/overlays/README
Enable audio (loads snd_bcm2835)
dtparam=audio=on
[pi4]
Enable DRM VC4 V3D driver on top of the
dispmanx display stack
dtoverlay=vc4-fkms-v3d
max_framebuffers=2
[all]
#dtoverlay=vc4-fkms-v3d

The edited CONFIG/TXT file - the conditional
statements are in square brackets with the RISC
OS bit highlighted.

length - the same length as the image file
that was written to the card - so that it will
fit various different makes of 8GB SD
card. The purpose of this backup is so that
a fresh card can be created and retested if
things go wrong! Also the first boot does
some complicated things to the SD card
image that has taken so long to create and
it is wise to be able to do the testing on a
known SD card image.

A short programme in BBC BASIC for
Windows will do this - RISC OS struggles
to handle files which are so large. See inset
below for details.

3 Dual Boot Firmware

The standard Raspian distribution has two partitions - a FAT and a Linux partition. These do not overlap.

REM Truncate to 30,000MB
F%=OPENUP"C:\Data\30G_armini.img"
PTR#F%=0
L%=1392508928
H%=7
SYS "SetFilePointer",@hfile%(F%),L%,^H%,0
SYS "SetEndOfFile",@hfile%(F%)
SYS "CloseHandle",@hfile%(F%)
END

This programme truncates the file to a length of
1328MB plus 7*4096MB = 30000MB. To
truncate to 7000MB then L%=3045064704 and
H%=1 and to truncate to 4GB plus 1875MB we
need L%=1875*1024*1024 and H%=1. This
image is 5971MB and so should comfortably fit
onto an 8GB SD card.

The SD card can be recreated (by
writing the image to the card again)
between each attempt so that the fresh
install is preserved until we get it right.

By downloading the Raspian distro
and flashing it to a USB pen drive (rather
than to an SD card) means that the
CMDLINE.TXT file in the FAT partition
of the USB drive has the correct partition
UUID for the ext4 partition on the USB
drive.

This means that booting from an SD
card, with the same CMDLINE.TXT file
(and CONFIG.TXT file) in its FAT
partition, will cause the Pi to boot into
Raspbian on the USB drive. A few simple
changes to the CONFIG.TXT file will
means that the Pi will boot into RISC OS.
Did this work?

Almost. Hold the button down and the
Raspberry Pi booted into the Linux
distribution on the USB pen drive. It then
displayed a message to say that it was
extending the ext4 partition to fill the drive
to use the whole of the capacity available.
It then said ... rebooting in 5 seconds.

When it rebooted I had let go of the
button by then and so it booted into RISC
OS. No problem, I thought, I'll reboot and
hold the button down this time. It then
just kept rebooting until I let go of the
button and then booted into RISC OS.

I then had a moment of inspiration
and looked at the CMDLINE/TXT file on
the pen drive. This was now different - the
newly resized ext4 partition had a different
UUID. So all I had to do was to copy the
edited CMDLINE/TXT file from the FAT
partition on the pen drive to the FAT

partition on the SD card and it all worked.
Adding the huge number of extra files

in the FAT partition of the RasPiOS
distribution and the much larger
CMDLINE/TXT and retesting on a Pi 4
showed that these extra files made no
difference to RISC OS. They would be
needed to start up RasPiOS although it
would then run from the USB drive.

Testing the same SD card on the Pi
400 gave some problems - after a lot of
trouble-shooting I found by trial and error
that one particular file ‘bcm-2711-rpi-4-b/dtb’
was needed for Raspian but, if present,
prevented RISC OS from starting up on
the Pi 400.

So the dual boot worked perfectly on
the Pi 4 - press the button and booting was
to RasPiOS, release it and booting was to
RISC OS. Shutdown either system and the
restart would be selected by the button -
RISC OS or RasPiOS.

When the Raspberry Pi starts, two files
are passed to the GPU - start4.elf (which
specifies the VideoCore firmware in use)
and fixup4.dat (which specifies memory
locations). There are two methods,
mutually exclusive, for the GPU to pass
information to the kernel: the start.elf file
will either load a device tree blob (if
present) appropriate to the hardware or
will put such information (called ATAG)
into memory at 0x100.

Adding a command device_tree= to
CONFIG.TXT forces the latter method
for RISC OS and it all worked.
Chris Hall chris@svrsig.org

4 Dual Boot Firmware

disable_gamma console=serial0,115200 console=tty1 root=PARTUUID=12345678-02
rootfstype=ext4 elevator=deadline fsck.repair=yes rootwait quiet splash
plymouth.ignore-serial-consoles

The CMDLINE/TXT file on the USB pen drive has been silently changed to have the new partition
UUID for the ext4 partition on that drive. The 'init' command to resize the partition on first boot has also
been removed.

5 Dual Boot Firmware

A small circuit board incorporates a 15k resistor, a 680nF capacitor and a switch or push button. It connects
to pin 29 (GPIO 5) and to pin 25 (GND). Flying leads connect to the switch and to the ‘RUN’ pin.

