What is OLE?

Object Linking and Embedding

I shall expand on the simple answer
above! The purpose of OLE is to allow a
‘client’ application to edit certain types of
object data without having to know how to
do this itself. Although this process is not
documented in the User Manual, the Style
Guide or the Programmers’ Reference
Manual, it would be explained in the

documentation for such a ‘client’
application.
The process was developed by

Computer Concepts in 1993 and even
allows ‘server’ applications such as Draw
and Paint (which do not support OLE) to
be made unconscious use of in this way.

Such a server application would
receive the same message that would be
broadcast by the Filer when a file in a Filer
window is double-clicked. The file itself
would be in a location known to the client,
probably in its ‘Scrap’ directory. Provided
that the edited file is saved back to the
same location (a constraint which also
applies to server applications that know
about OLE), the ‘client’ application
would, in principle, be able to update the
embedded object each time it is saved.
Embedded objects

For an embedded object to be capable
of OLE it needs to have a filetype that
identifies the serving application: for
example a Draw file defines the !Draw
application as one that can edit Draw files
and a Draw file can be embedded in many
applications as a vector graphic image.

Generally speaking, applications can
identify the type of data in a file from its
filetype or from its content (many types of
file contain header information in the first
few words characteristic of the type of data
they contain). In RISC OS it is fairly rare
to use the latter method.

IFamTree.Example.Smith+Jones

B John SHITH = Mary ROBINSON
b a1 " TR A R
d. 1968 d.1975 d.1968 d.1975

John MONTHORENCY = Mary SHITH Alan SHITH Bill SHITH
g!igagw HORENCY b. 1918 n.1930 gh.l%ﬁ b.1988 b.1988
d. 1968 d. 1975 d.1968 d. 1968 d.1968

i]1ian HONTHORENCY

Hilli
b.1988
d.1368

The graphic above is a ‘TreeData’ file, type &1E6,
it contains both the graphic image that should be

displayed and, embedded in a tag, the genealogical
information from which the image was generated.

Let us say that you have a ‘server’
application that uses some internal data to
produce a Draw graphic. A good and very
simple example is TableMate: it saves its
data in a “I'blMate’ file (type &BCF).

Double-clicking a “I'blMate’ file
performs the action you would expect: it
runs TableMate Designer II (if it is not
already running) and loads the file for
editing and re-saving.

Examining a “TblMate’ file shows that
its internal format is that of a Draw file.
Impression, ArtWorks, Ovation Pro and
TechWriter know (through hard coding)
that files of type &BCF contain Draw data
and will embed them as a vector graphic.

Impression and TechWriter will also
examine the header of a file of unknown
file type and will recognise a file containing
Draw data and load it as a vector graphic.
They will also respond to a CTRL-double-
click over such an object by saving the
object data as a ‘Scrap’ file and sending
the same message that the Filer would
send if a file in a Filer window was double-
clicked (and after no response, run the
application concerned first).

I Archive 24:n

Ovation Pro will respond to a CTRL-
double-click over such an object (i.e. one
that it recognises) in approximately the
way described. ArtWorks does not.

A Drawfile that is not a Draw file?

Clearly if a “I'blMate’ file contained
only a vector graphic image then the
internal formatting information would be
difficult to recreate. The Draw file format
allows extra data to be included in a Draw
file held within a ‘tag’ object - the ‘tag’
object contains a ‘tag’ number (allocated
by ROOL) plus a single Draw object. In
the space following this Draw object and
up to the end of the ‘tag’ object is stored
data that should be understood by the
owner of that tag number.

So TableMate can thus reserve space
to save its internal data as well as creating
a Draw vector graphic image. Other
examples of such data embedded in a
Draw format file are type &D91 (Equasor)

and type &I1E6 (TreeData used by
FamTree).
In all these cases, only the tag

information is considered when the file is
loaded and the vector graphic image is
recreated from scratch.

OLE needs to be ‘two-way’

What has been described so far is a
one-way process: the client application
tells the server where the file is that is to be
edited. It is all very well to know where
you put the file but how do you know
when it has been altered or re-saved? You
could just keep looking at it to see whether

the file datestamp has changed but you
might find it incomplete or open with data
partially written to it.

The OLE Support module provides a
way for the object to be linked: it will use
‘up calls’ (SWI OS UpCall) to monitor
when the file has been modified and notify
the client by a Wimp Message.

The support module has two methods
for doing what is required: originally it
required the client to broadcast the
message that a file was to be edited and
once this had been done the client was
expected to start the module and use the
OLE LinkFile SWI to ask for the file to be
watched.

An improved method can also be used:
the presence or absence of a system
variable OLEServer$Type ttt determines
whether the server application handling
files of type ttt is aware of the OLE
protocol.

If the server is unaware (no variable
exists) then the client application should
start up the OLE Support module and
issue a SWI call OLE SimulateSession.
This will create the system variable for this
file type, identifying the OLE Support
module itself as the task to start up if the
session cannot be opened.

Now the «client <can use a
Message OLEOpenSession message in
place of a Message DataOpen message to
identify the file to be edited. This will start
up the server application if not already
running.

OLEServer$Type_1E6 : -N FamTree -R run ADFS::HD4.$.Apps.!FamTree.!Run
OLEServer$Type_xxx : -N OLESupport -R /Desktop_OLESupport

The client calls the SWI OLE _SimulateSession if no system variable has been set up (server unaware of
OLE) and the support module will set the variable for filetype xxx. The client can then reuse its normal
message passing and variable scanning code for that file type. The application it will start up is the
OLESupport module task. When this module recives a Message OLEOpenSession, it will respond as
normal with an acknowladgement. It will however also send a DataOpen message using information passed
in OpenSession to get the ‘real’ but ‘non-compliant’ application to load the data. If this fails it will attempt
to run the file. Having created a link, the module will then keep track of the file through up calls and inform
the client everytime the real server saves to the file with an OLEFileChanged message.

2 Archive 24:n

When notified by the module that the
file has been modified, the client should
update the object being displayed
accordingly.

Practical effect of OLE

A file that contains a Draw graphic is
loaded into a client application which
displays it as a vector graphic image. If the
user CTRIL-double-clicks over this object
then it is loaded by an application that can
edit such files allowing the edited version
to be saved back into the client.

The subtle point here is that the
editing application does NOT use the
Draw data in the file but only the tag data
and recreates the vector graphic image
itself from scratch using the tag data only.

Using equations in Impression,
TechWriter or Ovation Pro is greatly
simplified: create the equation in Equasor
and save the file in a frame. The graphic is
displayed. CTRL-double-click and you
can edit the equation in Equasor and save
it back.

The same method with TableMate
allows tables to be included and edited.
Impression and TechWriter can also cope
with such graphics in newly written
applications: a FamTree file can be
included as a graphic and reopened in
FamTree to move the boxes in the family
tree around.

Artworks will load Equasor or
TableMate files as vector graphics (these
file types are ‘hard coded’ in ArtWorks to
be treated as Draw files) but it cannot
support OLE.

Conclusion

This is a useful prorocol but, to say the
least, is not very well publicised.

The module OLESupport is bundled
with TechWriter, Messenger Pro,
Impression Style (free to download) and
Impression Publisher Plus (and X).

Chris Hall chris@svrsig.org

3 Archive 24:n

