
Introduction

NVMe drives are available for RISC
OS and offer quite fast storage. Using the
standard 512B sector size (more on that
later) the RISC OS partition can be up to
256GB in size. Quite inexpensive drives
offer a total capacity of 512GB so what do
we do with the unused part of the drive?

Firstly there is no CMOS byte
reserved to specify the boot drive if the
boot filesystem is set to NVMe so RISC
OS cannot boot directly from NVMe, even
if the NVMe drivers are included in ROM.

There is also no support in the Pi
model 4 EEPROM to talk directly to
NVMe so booting directly from NVMe is
not supported. However it is easy to use
the eMMc storage provided on the CM4
to specify the NVMe drive to be used as
the boot drive, both for RISC OS and
Linux. The eMMc is thus only used
during the boot process.
Partitioning the NVMe drive (1)

Let us assume that you have a
Raspberry Pi with a standard RISC OS
distro on SDFS and you plug in a new
NVMe drive to the PCI express connector.

The first step is to make the drive
available to RISC OS. Using PartMgr is
the easiest way to do this. Although a
‘Loader’ partition on an NVME drive
cannot be seen by the Pi 4 EEPROM
software, it can serve a useful function as a
partition shared between RISC OS and
Linux and used by Linux to load its
kernel.

!PartMgr 1.03 (23-May-2024) will
initialise, partition and format NVMe
drives using version 0.03 of the NVMe
drivers:
NVMeDriver 0.03 (25 Mar 2024)
NVMeFiler 0.03 (25 Mar 2024)
NVMeFS 0.03 (25 Mar 2024)

 Most NVMe drives will use 512B
sectors by default. PartMgr can partition
these and provide a two-partition disc
image where the FAT partition can be read
by RISC OS (via the file Boot:Loader). It
will also download the standard
HardDisc4 and firmware.

1 �Article on NVMe and PartMgr

Dual Boot with NVMe

Above: The options here will generate a 200GB

filecore partition (maximum is 250GB with 512B

sectors) containing a 300MB FAT partition.

Below: the result as seen by PartMgr.

Booting

On the CM4 an EEPROM has the
code previously in BOOTCODE.BIN and
loads START4.ELF and FIXUP4.DAT directly
from a FAT partition on an SD card or
eMMc storage. The files CONFIG.TXT and
CMDLINE.TXT then specify how to load the
Operating System.

The RISC OS ROM (plus the CMOS
settings) are loaded from the same FAT
partition. The CMOS settings specify the
RISC OS boot filesystem and drive.

When Linux is being started, the file
CMDLINE.TXT specifies the UUID of an
ext4 partition on any drive which contains
the Linux root filesystem. A file in that
partition specifies the UUID of a FAT
partition that contains the Linux kernel.

At present it is not possible in RISC
OS to specify the boot drive number for an
NVME drive as there is no CMOS byte
reserved for this. However it is possible to
place an Obey file !Boot.!Run on SDFS
that will load the NVMe drivers (from
SDFS) and run boot from the NVMe
drive making the NVMe drive the boot
drive.

What we have done so far will get
RISC OS booting from SDFS and having
a 250GB RISC OS partition available on
the NVMe drive for storage.

The first objective is to produce a USB
or NVMe drive with a Linux partition on
it and to update the firmware on the SD

card or eMMc storage so that the machine
will boot up in either RISC OS or
Raspberry Pi OS (aka Raspbian)
depending whether a switch (or link) on
pins 29 and 30 of the 40-pin header is
closed (or present).
Dual boot using USB for Linux

The next step is to download a
standard Linux distro image and write it to
a USB drive. The standard distro for
Raspian is designed to fit onto a range of
SD cards so long as they are at least 8.01
GB (8602517504 bytes) in size. If you
write this image to a USB drive, it will
have the same two-partition structure but
default boot will still be from SDFS.

With a RISC OS image on the SD
card (or eMMc drive) and the USB drive
with the Raspian image plugged in, then
start RISC OS. The NVMe drive has
already been partitioned as described
above so that RISC OS can ‘see’ it.

The next step, using RISC OS, is to
copy all the files from the FAT partition of
the Raspian (USB) drive to
NVMe::$.!Boot.Loader.V. RISC OS will not
use these files but they will be visible to
RISC OS once it has started up.

Now we copy the file ‘CMDLINE.TXT’
from the Raspian partition on the USB
drive (SCSI::$.!Boot.Loader.CMDLINE/TXT) to
SDFS::$.!Boot.Loader.CMDLINE/TXT on the
SD card or eMMc storage and add the
text ‘disable_gamma’ as shown below:

2 �Article on NVMe and PartMgr

The contents of CMDLINE/TXT - the location of the root file system is specified by a partition UUID,

highlighted above. For a particular SD card image this magic number is known. If you specify the correct

partition UUID for an ext4 partition on a USB pen drive then Linux will boot from that pen drive. It looks

at the file ‘/etc/fstab’ in its rootfs for the location from which to load the kernel (bootfs).

Whereas RISC OS requires very few, if any, commands in the CMDLINE/TXT file (disable_gamma and

disable_mode_changes for example), Linux requires lots of stuff, which RISC OS can happily ignore.

The partition UUID is a unique identifier for a partition and may refer to a USB drive, SD card, eMMc

storage or an NVMe drive.

disable_gamma console=serial0,115200 console=tty1 root=PARTUUID=e79118ca-02
rootfstype=ext4 elevator=deadline fsck.repair=yes rootwait quiet init=/usr/lib/raspi-
config/init_resize.sh splash plymouth.ignore-serial-consoles

The effect of all that we have done so
far is to make a Loader partition on the
NVME drive a bit larger than normal so
that it is large enough for the Linux
firmware and kernel. The SDFS will still
control the boot process and will still boot
into RISC OS exactly as before.

Now we make some edits to the file
‘CONFIG.TXT’ on the SDFS card (or eMMc
storage) as shown below:

With no switch fitted to pins 29 and 30
on the 40-pin header, the status of GPIO 5
will be read by ‘CONFIG.TXT’ as level 1 and
the commands to load RISC OS will be
followed.

We now edit the file ‘CMDLINE.TXT’ on
the USB drive to remove the command
‘init=/usr/lib/raspi-config/init_resize.sh’ so that
Linux will not resize itself to occupy the
full size of the USB drive. We can now
start up Linux so that it loads its kernel
and its root file system from the USB drive
if the switch between pins 29 and 30 is
closed.

We now have a dual boot facility using
the USB drive for Linux and the SDFS
storage for RISC OS with a switch
selecting the OS: closed for Linux, open
for RISC OS.
Partitioning the NVMe drive (2)

If you hold down the switch (or fit a
link) between pins 29 and 30 and reboot,
then Linux will boot.

The first time that Raspbian starts up
it will ask for some parameters (such as
Language etc.) to be set and then show the
desktop. It may reboot and so you should
continue to keep the switch closed until
the Linux desktop appears.

The command ‘sudo apt-get GPartEd’
will download and install the Linux
Partition Editor GPartEd onto the USB
drive. We can now use this to examine the
NVMe drive.

3 �Article on NVMe and PartMgr

[gpio5=1]
fake_vsync_isr=1
framebuffer_swap=0
gpu_mem=64
init_emmc_clock=100000000
ramfsfile=CMOS
ramfsaddr=0x508000
kernel=RISCOS.IMG
device_tree=
hdmi_drive=2
hdmi_blanking=1
disable_overscan=1
[pi4]
enable_gic=1
[all]
[gpio5=0]
Additional overlays and parameters are
documented /boot/overlays/README
Enable audio (loads snd_bcm2835)
dtparam=audio=on
[pi4]
Enable DRM VC4 V3D driver on top of the
dispmanx display stack
dtoverlay=vc4-fkms-v3d
max_framebuffers=2
[all]
#dtoverlay=vc4-fkms-v3d

The edited CONFIG/TXT file - the conditional

statements are in square brackets with the RISC

OS bit highlighted.

This is the standard RISC OS

distro written to the NVMe drive

by PartMgr it includes the latest

RISC OS 5.30 firmware and

HardDisc4 contents.

We’ll add two further partitions

using the GPartEd utility in

Linux.

4 �Article on NVMe and PartMgr

Now there are two further, blank

partitions on the NVMe drive.

Using the ‘Partition/New’

command we add a 20GB fat32

partition and format it, then add

a 20GB ext4 partition and

format it.

The Linux distro is mounted as

/dev/sda with a UUID of

e79118ca and the NVMe drive

is mounted as /dev/nvme0n1

with a UUID of 85322327.

Now we will copy the Linux

rootfs partition from the USB

drive to the NVMe drive.

Linux is still booting from the

USB drive and both its rootfs

and its bootfs partitions are on

the USB drive.

We can now change the file

CMDLINE.TXT on the

eMMc storage to specify the

UUID of the NVMe drive. We

will not add back the command

to expand the rootfs partition to

occupy the unused space on the

NVMe drive - we can do this

using GPartEd.

When Linux starts up the next

time, bootfs is still on the USB

drive. The location of bootfs is

specified in a file ‘/etc/fstab’ in

rootfs. We can edit this file in

Linux (using the command

‘sudo gedit /etc/fstab’) to specify

the UUID of the NVMe drive

for boots. The bottom window to

the left shows that we have

unplugged the Raspian USB

drive and Linux is now booting

from the NVMe drive.

We now have a four partition NVMe
drive and a dual boot facility using a
switch on the 40-pin header. The NVMe
drive has a 200GB RISC OS partition and
a 260GB Linux partition as well as two
FAT partitions, 300MG and 20GB.

At present it is not possible to specify
the boot drive number for an NVME drive
as there is no CMOS byte reserved for
this. However it is possible to place an

Obey file !Boot.!Run on SDFS that will
load the NVMe drivers (from SDFS) and
then run !Boot from the NVMe drive
making the NVMe drive the boot drive so
far as RISC OS is concerned.
Why add a FAT partition?

On a 512B sector drive it can be used
for file sharing between Linux and RISC
OS but that could probaly be done more
simply by just plugging in a FAT-

5 �Article on NVMe and PartMgr

On a drive with 512B sectors, we get a standard RISC OS filecore partition of 250GB with access to the

contents of a 300MB FAT16 partition: at present PartMgr has put the standard firmware into that

partition but RISC OS does not use it. It can be used for file sharing between RISC OS and Linux.

Above: the view from RISC OS.

Below: the view from Linux after one file has been added from RISC OS and then one from Linux.

formatted USB drive, which both RISC
OS and Linux can see and use. The real
reason is to provide a FAT partition for the
Linux kernel and its bootfs.
Use of 4k sectors

There are advantages and
disadvantages if we convert the NVMe
drive to use 4k sectors rather than 512e
sectors. Both fat32fs and DOSFS do not
support 4k sectors and so ‘Loader’
partitions cannot be seen from RISC OS
and thus are not useful for file sharing.
The RISC OS partition can be larger than
250GB (up to 2TB) with a
correspondingly larger LFAU. NVMefs
also runs considerably faster for random
file access. The next step is therefore to
convert the NVME drive to use 4k sectors.

Care is needed for this step as
changing an NVME disc between 512e
and 4k sectors will destroy all data on the
drive. Only some NVMe drives can be
converted to and from 4k sectors.

NVME4kFmt version 0.05 can show
whether the drive will support both
formats and, if so, convert from one to the
other. We will run it to examine a 1TB
drive that is currently using 512e sectors.

6 �Article on NVMe and PartMgr

We have used GPartEd to

‘grow’ the Linux partition from

20GB to fill the unused space on

the drive (Linux can do this

without losing the files stored on

the partition). We have a fat32fs

formatted USB drive to make

sharing files between computers

easier.

Above: it shows the drive supports 4k sectors.

Below: so we select 4k sectors and click the option

‘CHANGE’ which then appears. It will then allow

filecore partitions above 250GB to be created.

What are 4k discs?

We are used to a standard sector size
of 512 bytes. Originally discs were simply a
sheet of magnetic material that was spun at
3600 or 7200 rpm. The start of each
sector on a track was marked by a special
magnetic ‘marker’ and 256 or 512
(sometimes 1024) bytes were read or
written a short time after this passed by the
head. There was room for about 16 sectors
on a track.

A single-sided disc had room for
perhaps 35 tracks and the ‘address’ of
some data was therefore composed of track
number (0 to 34) and sector number
(either 0 to 15 or 1 to 16). Double sided
discs had also the head (0 or 1). Hard
discs had a platter of discs with multiple
heads and a disc address was thus now
composed of a ‘CHS’ address, cylinder,
head and sector.

FileCore (from RISC OS 3.80) used a
19-bit value (idlen=19) to identify a disc
object, so there can be no more than 219

objects, each requiring 20 bits in the map,
to allow for the extra terminating bit. The
granularity of a partition is the minimum
separation between each disc object, given
by the formula (idlen + 1)*LFAU. There
can be no more than 2idlen objects in the
partition. This sets the minimum value of
LFAU which is one parameter chosen
when formatting a partition.

The granularity of a 256GB partition
is 640k (idlen=19) or 176k (idlen=21).

The Large File Allocation Unit
(LFAU) is the internal space allocation
unit for large files. This can be increased
above the default to give improved
performance but at the expense of
consuming more space per file (wasting on
average about half the LFAU for each
large file).
Detail you can ignore

Device drivers typically use a 29-bit
addressing method to identify a particular
sector within a partition (plus 3 bits to
identify the disc drive). A partition using
4k sectors can be up to 2TB (=229 x 4k).

RISC OS 5.22 extended the maximum
sector size to 4k (maximum partition size
now 2TB). RISC OS 5.24 extended idlen
to 21 bits so the granularity of a 2TB
partition became 1408kB and on a 256GB
4k disc became 176k.

An alternative to the ‘CHS’ address is
the ‘LBA’ address - this is just a 29-bit
value giving the sector number.
Conversion between ‘CHS’ and ‘LBA’
(Logical Block Addressing) addresses is
simple arithmetic:
LBA = ((C * N) + H) * SPT) + S - 1
where N is the number of heads (max.
255) and SPT is the number of sectors per
track (max 63). Note that C is a 10-bit
quantity (0 to 1023), H is 8-bit (0 to 255)
and S is 6-bit (1 to 63).

Where a hard disc is partitioned the
512 bytes at CHS (0,0,1) = LBA 0 identify
where each partition starts and how big it
is. FileCore ignores this partition table and
stores its 512 byte boot block &C00 bytes
from the start which is CHS(0,0,7) = LBA
6 (with 512 byte sectors).

A disc object can store more than one
file or directory.

7 �Article on NVMe and PartMgr

16GB: LFAU >= 234 ÷2idlen ÷ (idlen+1) i.e. 1.6k,

so LFAU can be 2k/4k ...

Partition size Min. LFAU Granularity
(512)

Granularity
(4096)

idlen

16GB = 234 2kB = 211 40k = 80s - 19

128GB = 237 16kB = 214

4kB = 2
12

320k = 640s
88k = 176s

= 80s
= 22s

19
21

256GB = 238 32kB = 215

8kB = 213
640k = 1280s
176k = 352s

= 160s
= 44s

19
21

512GB = 239 64kB = 216

16kB = 214
- 1280k = 320s

352k = 88s
19
21

1TB = 240 128kB = 217

16kB = 214
- 2560k = 640s

704k = 176s
19
21

2TB = 241 256kB = 218

64kB = 216
- 5120k = 1280s

1408k = 352s
19
21

Solid state discs

NVMe and SATA discs are pretty
much all supplied with geometry that uses
512 byte sectors. Some actually arrange
data in 4096 byte units and emulate a disc
with 512 byte sectors. Some NVMe drives
using 512B sectors can be switched to use
4096B sectors and reformatted.

SATA drives for RISC OS using 4k
sectors are nothing new, you’ve been able
to use such drives since 2017 (on
Titanium at least, due to updated ADFS
and SATADriver modules). Elesar has
carried stock of preformatted 2TB SATA
drives since April 2018 as a spare part.

There are two advantages in switching
to 4k sectors for RISC OS: it increases the
maximum partition size from 256GB to
2TB and, in the case of NVMe discs,
offers very much improved performance
for random reads and writes (two or three
times the speed than on the same NVMe
drive with 512B sectors - roughly equal
speed to SATA drives).

The incentive to use 4k SATA drives
on RISC OS has however been muted as a
256GB partition is enough for most users.

So now that we have a strong incentive

to use 4k NVMe discs (much faster than
with 512B sectors), how easy is it to switch
them to 4k?

For this we need Linux, which
provides a set of nvme utilities:
Switching to 4k

There are two ways to switch an
NVMe drive from 512e to 4k - in RISC
OS using some software called
NVME4kFmt (still in beta development)
or in Linux, as described below.

Switching a drive to or from 4k sector
size destroys all the data on the disc. Once
the switch has been done, the driver needs
to be formatted again.

8 �Article on NVMe and PartMgr

Speed comparisons using the same NVMe drive with different formatting options, as shown.

RISCOSmark 2.06 (29-Mar-2016) by Richard Spencer 2003
Filing system: NVMe:HardDisc4.$.SpeedTests sector size=512B LFAU=4k partition=110GB
HD Read - Block load 8MB file 165415 42%
HD Write - Block save 8MB file 270415 20%
FS Read - Byte stream file in 1050 21%
FS Write - Byte stream file out 1558 30%

Filing system: NVMe:HardDisc4.$.SpeedTests sector size=512B LFAU=32k partition=110GB
HD Read - Block load 8MB file 194661 49%
HD Write - Block save 8MB file 281098 21%
FS Read - Byte stream file in 2937 60%
FS Write - Byte stream file out 2967 58%

Filing system: NVMe:HardDisc4.$.SpeedTests sector size=4k LFAU=8k partition=240GB
HD Read - Block load 8MB file 192752 48%
HD Write - Block save 8MB file 270415 20%
FS Read - Byte stream file in 4216 86%
FS Write - Byte stream file out 4347 85%

percentages are proportion of RAMfs speed

sudo apt install nvme-cli
sudo nvme id-ns -H /dev/nvme0n1
...
LBA format 0 : ... 512 bytes (in use)
LBA format 1 : ... 4096 bytes
sudo nvme format --lbaf=1 /dev/nvme0n1

this installs the ‘nvme’ command and uses it to

show whether the drive supports 4k sectors and, if

so, to re-format it to use 4k sectors vice 512B

sectors. Changing between 512e and 4k will destroy

all data on the disc.

The blank drive then needs to be formatted.

More complicated

We’ll use NVME4kformat to change
the LFA from 512e to 4k and to format a
768GB RISC OS partition (with an LFAU
of 32k). PartMgr does not, however, create
a suitable ‘MBR’ partition table at disc
address &000-&1FF to protect the RISC
OS partition. Other operating systems
place restrictions on where partitions may
start and end (e.g. on a 1MB boundary on
Linux with 4k sectors). This depends on
the drive design.

So, if RISC OS filecore is not the only
show in town, it is a good idea to have a
partition table defining the space used and
how much of the disc space is still
unallocated. We’ll create a MBR partition
table and write it to the NVMe drive.

Other operating systems use the
partition table at CHS(0,0,1) to identify
which parts of the disc have been already
used by partitions and whether or not it
can recognise them and read or write to or
from them.

We can then, in Linux, add a FAT
partition of 300MB (for Linux’s bootfs
and kernel) and an ext4 partition using the
remaining space on the drive for Linux’s
rootfs. Neither OS will now trample on
each other.

The software (DOSFS) that reads the
FAT partition in the RISC OS file
Boot:Loader is hard coded to use 512 byte
sectors and therefore cannot read or write
data to such a partition on a 4k drive. If
you do try the ‘two-partition’ approach
then clicking on Boot:Loader to open it will
produce the error window shown (above).

We’ll repeat the steps in Linux shown
on page 4 to add two partitions - one a
300MB FAT partition and one a 20GB
ext4 partition. This will give us a three-
partition NVMe drive.

9 �Article on NVMe and PartMgr

Above: This is a suitable MBR partition table,

512 bytes all zero apart from those shown.

Left: Writing the partition table

to the NVMe drive in Linux.

10 �Article on NVMe and PartMgr

Now that the RISC OS filecore

partition is protected by the

MBR partition table, we can

add two further partitions to the

NVMe drive. Using the

‘Partition/New’ command we

add a 300MB fat16 partition

and format it, then add a 20GB

ext4 partition and format it.

Now we will copy the Linux

rootfs partition from the USB

drive to the NVMe drive.

Linux is still booting from the

USB drive and both its rootfs

and its bootfs partitions are on

the USB drive. We now change

the file CMDLINE.TXT on

the eMMc storage to specify the

UUID of the NVMe drive.

We will expand the rootfs partition to occupy the

unused space on the NVMe drive using GPartEd.

We will copy the files from /boot on the USB drive

to /media/chris/LINUXBOOT on the NVME

drive) using Linux (as RISC OS cannot see both

partitions).

When Linux starts up the next time, bootfs is still

on the USB drive. We edit the file ‘/etc/fstab’ in

Linux (using the command ‘sudo gedit /etc/fstab’)

to specify the UUID of the NVMe drive for bootfs.

In the final configuration, the

mount point of nvme0n1p2

becomes /boot and the sda drive

is unplugged. Linux boots

entirely from NVMe and the

USB drive is no longer required.

PartMgr now shows this final

position - only the filecore

partition (768GB) is seen by

RISC OS. The FAT and ext4

partitions can only be seen by

Linux.

Making the same edits to
SDFS::$.!Boot.Loader.CONFIG.TXT and
SDFS::$.!Boot.Loader.CMDLINE.TXT will give
us a dual boot system with RISC OS
having 768GB of storage on the NVMe
drive.

Now we have a dual-boot machine
with RISC OS and Linux using separate
portions of the NVMe drive with plenty of
room for both. The FAT partition is for
the Linux mount ‘/boot’ and cannot be
seen by RISC OS as fat32fs cannot yet
read 4k sector partitions.

Chris Hall chris@svrsig.org

11 �Article on NVMe and PartMgr

